

600V, 30A, 0.16 Ω Max, $t_{\mbox{rr}} \leq$ 270ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- · Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

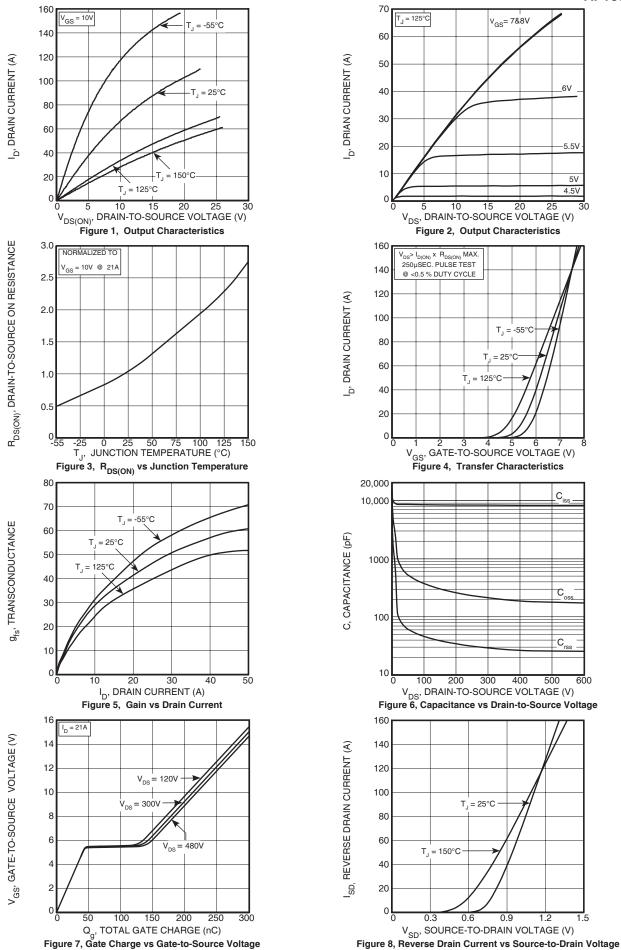
Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	30	
'D	Continuous Drain Current @ T _C = 100°C	19	А
I _{DM}	Pulsed Drain Current ^①	160	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	1200	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	21	Α

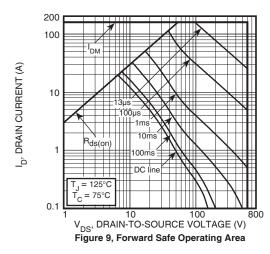
Thermal and Mechanical Characteristics

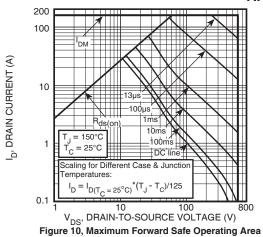
Symbol	Characteristic		Тур	Max	Unit
P _D	Total Power Dissipation @ T _C = 25°C			355	W
$R_{ hetaJC}$	Junction to Case Thermal Resistance	0.00		0.35	°C/W
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface			C/VV	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range -55			150	°C
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V
W _T	Package Weight		1.03		oz
			29.2		g
Torque	T			10	in·lbf
	Terminals and Mounting Screws.			1.1	N·m

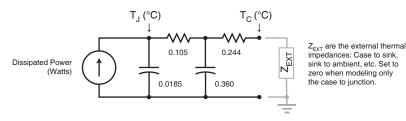
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		600			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.57		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 10V, I _D = 21A			0.13	0.16	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 2.5 mA$		3	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 600V	T _J = 25°C			250	μA
DSS		$V_{GS} = 0V$	T _J = 125°C			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

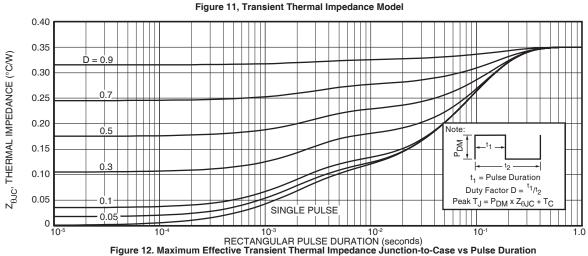
Dynamic Characteristics

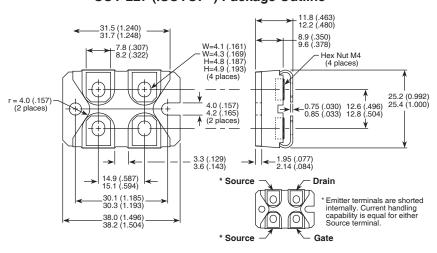

T₁ = 25°C unless otherwise specified


Symbol	bol Parameter Test Conditions Min Typ Max						
			IVIIII		IVIAA	Unit	
g _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 21A$		42		S	
C _{iss}	Input Capacitance	V 0V V 05V		8590			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		90			
C _{oss}	Output Capacitance			800			
C _{o(cr)} [⊕]	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 400V		420		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 400V		220			
Q _g	Total Gate Charge	V 04-40V L 04A		215			
Q_gs	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 21A,$ $V_{DS} = 300V$		45		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 300V		90			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		48			
t _r	Current Rise Time	$V_{DD} = 400V, I_{D} = 21A$		55		no	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		145		ns	
t _f	Current Fall Time]		44			


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditi	Min	Тур	Max	Unit	
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the				30	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	SU III			160	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 21A, T_J = 25^{\circ}C, V_{GS} = 0V$				1.0	V
t _{rr}	Reverse Recovery Time	Т	Γ _J = 25°C			270	ne
rr		I I	Γ _J = 125°C			500	ns
Q _{rr}	Reverse Recovery Charge	1 00	Γ _J = 25°C		1.14		μC
rr		di _{SD} /dt = 100A/µs	Γ _J = 125°C		2.91		μΟ
ı	Reverse Recovery Current	V _{DD} = 100V T	Γ _J = 25°C		9.6		Α
'rrm		T _J = 125°C			13.8] ^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 21A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 400V$, $T_J = 125^{\circ}C$				20	V/ns


- 1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 5.44mH, $R_G = 4.7\Omega$, $I_{AS} = 21$ A.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- Q C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -8.32E-8/V_{DS}^2 + 3.49E-8/V_{DS} + 1.30E-10.
- (6) R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)



SOT-227 (ISOTOP®) Package Outline

