

DATA SHEET

www.rongtechsemi.com

Silicon Carbide (SiC), 30 mohm, 1200 V, TO-247-4L RTC030N120P4L

Features

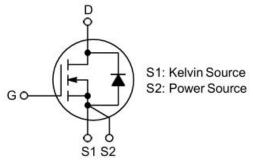
- Typ. $R_{DS(on)} = 30 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge ($Q_{G(tot)} = 98.6 \text{ nC}$)
- High Speed Switching with Low Capacitance
- 100% Avalanche Tested
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- Solar Inverters
- Electric Vehicle Charging Stations
- UPS (Uninterruptible Power Supplies)
- Energy Storage Systems
- SMPS (Switch Mode Power Supplies)

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	1200	V	
Gate-to-Source Voltage	Gate-to-Source Voltage			-10/+22	V
Recommended Operation Values of Gate-to-Source Voltage		T _C <175°C	V _{GSop}	-3/+18	V
Continuous Drain Current (Notes 1, 3)	Steady	Steady	ID	75	А
Power Dissipation (Note 1)	State	T _C =25°C	PD	431	W
Continuous Drain Current (Notes 1, 3)	Steady	Steady T10000	ID	66.3	А
Power Dissipation (Note 1)	State	T _C =100°C	PD	260	W
Pulsed Drain Current (Note 2)	Tc	= 25°C	I _{DM}	160	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode) T _C = 25°C, V _{GS} = -3 V			Is	75	А
Single Pulse Drain-to-Source Avalanche Energy (Note 4)			E _{AS}	1613	mJ
Maximum Lead Temperature for Soldering (1/25" from case for 10 s)			ΤL	270	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature.

4. EAS of 1613 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 55 A, V_{DD} = 100 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(ON)}	ID
1200 V	30 mΩ	75 A

N-CHANNEL MOSFET

TO-247-4L

ORDERING INFORMATION

Device	Package	Shipping
RTC030N120P4L	TO-247-4L	30 Units / Tube

^{3.} The maximum current rating is based on typical $R_{DS(on)}$ performance.

Table 1. THERMAL CHARACTERISTICS

Parameter		Max	Unit		
Junction-to-Case - Steady State (Note 1)	R _{SJC}	0.29			
Junction-to-Ambient - Steady State (Note 1)	R _{SJA}	40	- °C/W		

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF-STATE CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C (Note 6)	-	0.35	_	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$ $V_{DS} = 1200 V$ $T_{J} = 25^{\circ}C$	-	-	100	μA
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = +3/-10 V, V_{DS} = 0 V	-	-	±1	μA
ON-STATE CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 15 mA	1.5	2.2	3.1	V
Recommended Gate Voltage	V _{GOP}		-3	-	+18	V
		V _{GS} = 18 V, I _D = 30 A, T _J = 25°C	-	30	39	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 18 V, I _D = 30 A, T _J = 175°C (Note 6)	-	56	-	mΩ
Forward Transconductance	9 FS	V _{DS} = 10 V, I _D = 30 A (Note 6)	-	14	-	S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Input Capacitance	C _{ISS}		-	2180	-	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	-	159	-	
Reverse Transfer Capacitance	C _{RSS}		-	9.23	-	
Total Gate Charge	Q _{G(TOT)}		-	98.6	-	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = -3/18 V, V _{DS} = 800 V,	-	7.0	-	
Gate-to-Source Charge	Q _{GS}	$I_D = 30 \text{ A}$	-	21.2	-	
Gate-to-Drain Charge	Q _{GD}		-	26	-	
Gate-Resistance	Rg	f = 1 MHz	-	1.37	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}		-	16.8	-	ns μJ
Rise Time	tr		-	18.0	-	
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = -3/18 V, V _{DS} = 800 V, I _D = 15 A, R _G = 4.7 Ω	-	32.0	-	
Fall Time	t _f		-	11.0	-	
Turn-On Switching Loss	E _{ON}	Inductive load (Notes 5, 6)	-	230.3	-	
Turn-Off Switching Loss	E _{OFF}		-	68.9	-	
Total Switching Loss	E _{tot}		-	299.2	-	
SOURCE-DRAIN DIODE CHARACTERIS	TICS					
Continuous Source-Drain Diode Forward Current	I _{SD}	$\lambda_{res} = -2\lambda_r T_r = 0000 (h) t_r 0$	_	-	75	
Pulsed Source-Drain Diode Forward Current (Note 2)	I _{SDM}	V _{GS} = −3 V, T _C = 25°C (Note 6)	-	-	160	A
Forward Diode Voltage	V _{SD}	V_{GS} = -3 V, I _{SD} = 30 A, T _J = 25°C	-	4.0	-	V

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
SOURCE-DRAIN DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	V _{GS} = −3/18 V, I _{SD} = 30 A, dI _S /dt = 1000 A/µs, V _{DS} = 800 V (Note 6)	-	23.59	_	ns		
Reverse Recovery Charge	Q _{RR}		-	144.15	-	nC		
Reverse Recovery Energy	E _{REC}		-	13.83	-	μJ		
Peak Reverse Recovery Current	I _{RRM}		-	12.22	-	А		
Charge Time	T _A		-	13.47	-	ns		
Discharge Time	Τ _Β		-	10.12	-	ns		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted.
Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
E_{ON}/E_{OFF} result is with body diode.
Defined by design, not subject to production test.

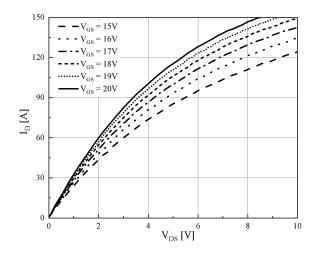


Figure 1. On-Region Characteristics

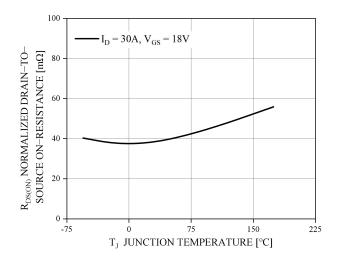


Figure 3. On-Resistance Variation with Temperature

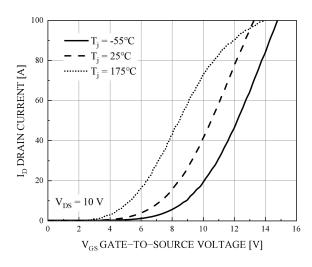


Figure 5. Transfer Characteristics

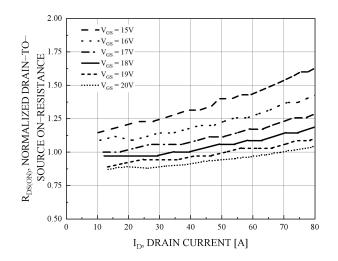


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

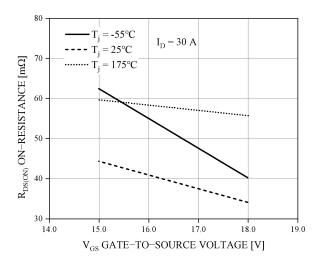


Figure 4. On-Resistance vs. Gate-to-Source Voltage

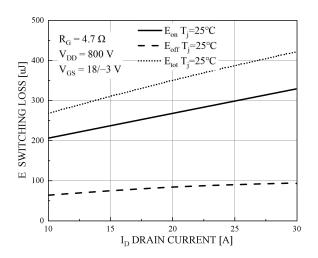
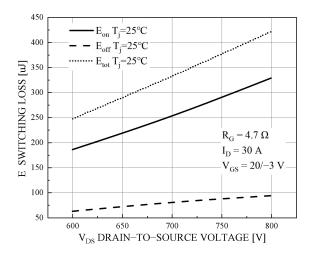



Figure 6. Switching Loss vs. Drain Current

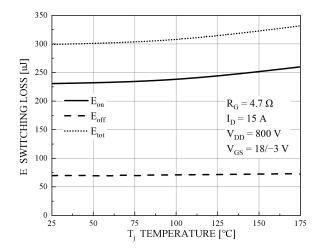


Figure 9. Switching Loss vs. Temperature

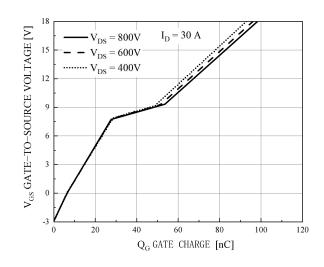


Figure 11. Gate-to-Source Voltage vs. Total Charge

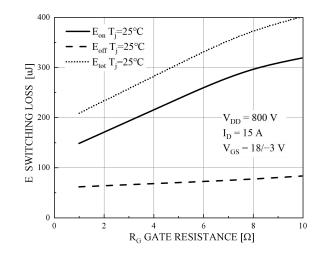
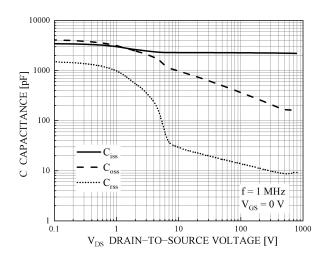
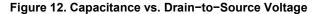




Figure 8. Switching Loss vs. Gate Resistance

Figure 10. Reverse Drain Current vs. Body Diode Forward Voltage

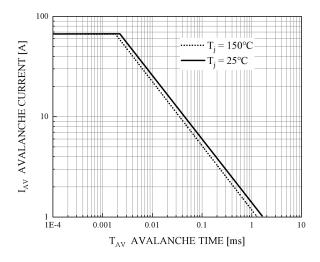


Figure 13. Unclamped Inductive Switching Capability

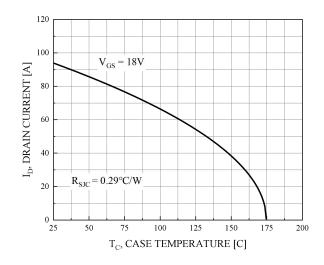
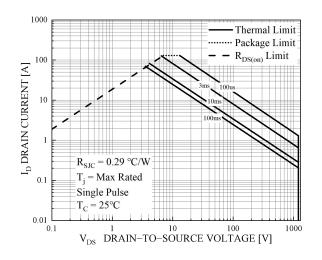
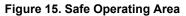




Figure 14. Maximum Continuous Drain Current vs. Case Temperature

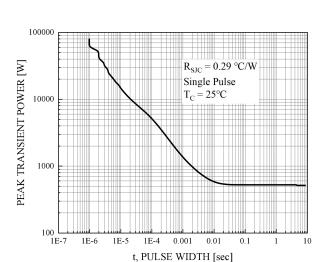


Figure 16. Single Pulse Maximum Power Dissipation

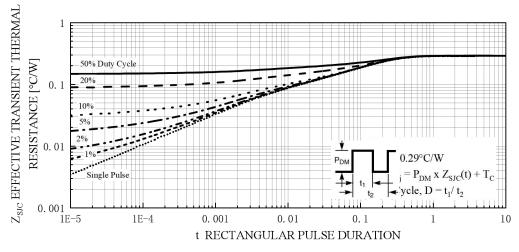


Figure 17. Junction-to-Case Transient Thermal Response

www.rongtechsemi.com